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Summary. The valence bond (VB) corrected single reference (SR) coupled cluster 
(CC) method [-J. Paldus and J. Planelles, Theor. Chim. Acta 89, 13-31 (1994)] with 
Singly and Doubly excited cluster components  (CCSD-VB) is applied to simple 
Par i se r -Par r -Pople  (PPP) model systems that are capable of simulating chemical 
bond breaking or formation. Dissociation into both closed and open shell type 
subsystems is considered. The 3- and 4-body connected cluster components  are 
first determined by cluster analyzing simple PPP-VB wave functions IX. Li and 
J. Paldus, J. Mol. Structure (Theochem) 229, 249 (1991)] involving only covalent- 
type structures, and are subsequently employed in the CCSD-VB approach. The 
results are compared with the full configuration interaction (FCI) or full valence 
bond (FVB) solutions, representing the exact result for these models, and the 
potential of the CCSD-VB approach is discussed. 

Key words: Coupled cluster methods - Valence bond (VB) wave functions - 
VB corrected CCSD method - Cluster analysis - Correlation effects - P P P  
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1. Introduction 

In the first part  of this series [1], further referred to as Part  I, we have formulated 
a valence bond (VB) corrected single reference (SR) coupled cluster (CC) method, 
involving singly and doubly excited cluster amplitudes, designated as the CCSD- 
VB approach. The basic idea of this approach is to obtain approximate 3- and 
4-body connected cluster components by cluster analyzing simple VB-type wave 
functions and to exploit them subsequently to truncate the CC chain of equations 
at the doubly excited level. This is achieved by explicitly evaluating the terms 
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involving these higher than biexcited clusters and using them to correct the 
absolute term in the CCSD equations. Clearly, such a precaution is not necessary 
under normal circumstances, when basic assumptions for the applicability of the 
CCSD method hold, namely when higher than pair cluster amplitudes are negli- 
gible or, as in the case of T3 clusters, may be properly accounted for through 
perturbative approaches [2]. It is well known that this is indeed the case for 
non-degenerate ground states of closed shell systems in their equilibrium geo- 
metries. However, when considering these systems away from their equilibrium 
conformations, particularly when dissociating or forming chemical bonds, the 
negligibility of these higher excited clusters no longer holds and the performance of 
the standard CCSD approach deteriorates or even breaks down (see, e.g. [3-]). Of 
course, in such cases the general multi-reference (MR) formalism (for an overview 
see e.g. [4]) should be applied. However, since MRCC approaches are both 
conceptually and computationally rather demanding, it is worthwhile to explore 
the possibility of extending the SR CCSD method into regions where quasidegener- 
acy of the reference configuration plays a crucial role. Obviously, such an approach 
is not intended to provide highly accurate results, as one expects from bona fide 
MRCC methods, but rather to extend the utility of the SR CCSD approach well 
beyond its range of applicability. 

In the second paper of this series [5], further referred to as Part II, we have 
tested the CCSD-VB approach on a number of re-electron model systems described 
by the Pariser-Parr-Pople (PPP) Hamiltonian. In this way we were able to explore 
the whole range of correlation effects by simply scaling the resonance integral fl, 
whose reciprocal value may be regarded as a coupling constant. It is well known 
that when approaching the fully correlated limit (/~ = 0), both orbital and configura- 
tional degeneracy effects arise, which make the proper account of correlation effects 
very demanding. Indeed, a number of methods, including SR CCSD, often break 
down in this region [3, 6]. We have shown in Part II that simple VB wave 
functions, involving at most covalent structures, can provide a reasonable estimate 
of 3- and 4-body clusters which, in turn, yield the desirable corrections of the 
CCSD equations, so that meaningful results are obtained even in the region where 
the standard CCSD method gives very poor results. 

In this paper we intend to exploit the same r~-electron model systems in order to 
simulate a dissociation or formation of chemical bonds. We shall thus employ 
a physical (or spectroscopic) parametrization of the PPP Hamiltonian and model 
the dissociation process by assuming that for nonequilibrium geometries the 
resonance integral/~ is proportional to the corresponding orbital overlap S. This 
approximation forms the basis of the so-called Mulliken "magic formula" [7] for 
molecular dissociation energies and is thus often referred to by this name. Since for 
the spectroscopic parametrization the SR CCSD method works well in the vicinity 
of equilibrium nuclear conformations, we will be mainly concerned with the regions 
of the potential energy surface that correspond to highly stretched C-C bonds. 
Although this problem is less demanding than the exploration of the correlation 
effects in the region near the fully correlated limit, it represents a much more 
realistic model of the type of problems that one encounters when handling the ab 
initio models. In particular, we will also explore the case when the system disso- 
ciates into open shell fragments, so that the spin-adapted SR CCSD method is 
unable to properly describe the dissociation process. 

In the next section we briefly describe the method and models employed. In 
Sect. 3 we present and discuss our results, while in Sect. 4 we briefly summarize the 
conclusions concerning the capabilities of the CCSD-VB approach. 
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2 Method and models employed 

The essence of the SR CCSD-VB approach was briefly outlined in the Introduction 
and we refer the reader to Part I for more detail and explicit expressions for the 
relevant correcting terms. In Part II, this approach was applied to a number of 
aromatic, nonaromatic and antiaromatic 7t-electron model systems. In each case 
the whole range of the coupling constant, ranging from the noncorrelated to the 
fully correlated limit, was examined. The advantages and usefulness of these simple 
models was also amply discussed. 

In this paper we use these models to simulate chemical bond breaking and 
formation. This is achieved by exploiting Mulliken's "magic formula" [7] (see Sect. 
1) for the required resonance integrals ft. Moreover, since the differences between 
the nearest neighbor and the next nearest neighbor C-C internuclear separations, 
involving carbon atoms in different subsystems which react (or into which a given 
species dissociates), tend to zero with the increasing subsystem separation, we 
abandon the tight binding approximation for the one-electron part of the PPP 
Hamiltonian. Thus, the re-electron Hamiltonian, Eq. (6), of Part II takes now 
a more general form 

H,~ = ~ fl~,~Eu~ +½ ~ yu~(n~,- 1)(n~ - 1), (1) 
/t,V /~,v 

where the symbols are defined as in Part II, except that the resonance integrals 
flu~ are considered between any two centers /~ and v, just as the two-electron 
Coulomb integrals 7u~. They are determined by assuming their proportionality to 
overlap [7], i.e. 

f l  - °'R "-  ~(Ro) S(R.~). (2) 
u~=P~ ~'~)-S-~o) 

Here Ruv designates the distance between the sites # and v and S(R) is the over- 
laPointegral between the 2pz carbon atomic orbitals in n-orientation which are 
R(A) apart, 

S(R) = aAge-P(p 3 + 6p 2 + 15p + 15), 

p = CR/ao, (3) 

assuming the Slater's value for the effective nuclear charge ¢ = 1.625 and ao is the 
Bohr radius (0.529177 A) [8]. The reference equilibrium C-C separation is taken as 
Ro = 1.4A and fl(Ro)=-2.4 eV (or, in some cases, -2.5 eV) [8]. We note that since 
we go beyond the tight binding approximation, the PPP Hamiltonian (1) no longer 
possesses the alternancy symmetry. As we have seen in Part II, this symmetry is 
also usually broken in the CCSD-VB method, since the truncated VB wave 
functions are constructed using the overlap enhanced atomic orbitals (OEAOs). 

As the source of the 3- and 4-body connected cluster amplitudes we again rely 
on the PPP-VB method [9]. Only covalent structures are employed throughout 
this study. 

Similarly as in Part II, we start with the simplest model involving only T4 
clusters, namely the dissociation of the n-electron model of butadiene into the two 
ethylenic fragments (Fig. l(a)). In this way we simulate the simultaneous breaking 
of two single bonds. Considering, next, breaking of a single bond in this model, we 
gradually decrease the complement 0 of the C1 C2 C3 and C2 C3 C4 angles from rt/2 
to 0 (Fig. l(b)). Finally, we examine two possible dissociation pathways for the 
benzene n-electron model: one leading to butadienic and ethylenic fragments 
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Fig. 1. A schematic representation of 
nuclear configurations and the definition 
of the parameter d for the PPP models of 
cyclobutadiene dissociation into the 
ethylenic fragments (a) and ring opening 
(b), as well as benzene dissociation into the 
closed shell (Diels-Alder mode) (e) and 
open shell (radicaloid mode) (d) fragments 

(Diels-Alder mode) and the other one leading to two allylic fragments (radicaloid 
mode). The latter example is designed to test the dissociation process involving 
open shell fragments. The geometry of both models is depicted in Figs. l(c) and l(d). 

3 Results and discussion 

3.1 Cyclobutadiene 

3.1.1 Simultaneous opening of two bonds. We first investigate the n-electron model 
of cyclobutadiene separation into the two ethylenic fragments or, equivalently, the 
interaction of two ethylenes, assuming a rectangular geometry of the nuclear 
framework shown in Fig. 1 (a). We note that T1 = T3 = 0 at all times in this model, so 
that only one t4 amplitude intervenes. Also, we have that CCD ~ CCSD = CCSDT. 
For the reference resonance integralcorresponding to unstretched C-C bonds we 
take fl(Ro)= -2 .5  eV and Ro = 1.4 A. The VB description employed is always in 
terms of two Kekul6 structures. 

Now, with the exception of the square configuration, when the separation 
between the ethylenic fragments d (Fig. l(a)) equals the C-C "equilibrium" bond 
length Ro = 1.4 A, i.e., when d= R0, we have two distinct C-C "bonds" in our 
model characterized by distinct resonance integrals [1o=[1(Ro)=-2.5 eV and 
[11 =([1o/S(Ro))S(d). Thus, even when involving only the nearest neighbors in the 
OEAO basis, we should associate different parameters with these distinct bonds. 
There are several ways how to account for this fact. We have thus examined the 
following possibilities [which we designate by the acronyms indicated in square 
brackets]: (a) As a crude first approximation we use only one mixing parameter 
throughout [VB(2K, le)]. (b) We keep the mixing parameter associated with each 
ethylenic fragment frozen at its optimal value corresponding to the equilibrium 
geometry and optimize only the second mixing parameter ~2 for each d [VB(2K; le, 
1~)]. This approximation will be particularly useful when considering larger sys- 
tems. (c) We optimize both mixing parameters [VB(2K, 2e)]. 

For our simple 4-electron model, the last approach (c) leads to an almost perfect 
agreement with the FCI model. For example, choosing d = 2 A, the FCI correlation 
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R VB(2e) -- g OlgO eV energy ~ :" ~vvCIcorr =--5.9154 eV, while VB (2K, 20 approach gives _corr ----- . . . . .  
(with e] pt= 0.325 and ~pt= 0.064). Using the first approximation (a) above, we will 
get -~vB(l~)-corr - -  . . . . . .  ~ q77P eV (with e~pt=0.296). In view of these facts we only explore 
the crudest appoximation (a), since the two-parameter descriptions will yield 
results that are almost indistinguishable from the exact FCI solutions. We shall see 
that even the very rough approximation (a) leads to a satisfactory description 
within the CCD-VB formalism. 

The t4 amplitudes obtained with the simplest PPP-VB(2K, 10 approach are 
compared with their FCI counterparts in Table 1. We see that even this crudest 
approximation, which gives a rather poor energetic description of our model (see 
below), provides us with a reasonable estimate of the t4 cluster amplitudes, which in 
fact remain to be rather small throughout the range of geometries considered. 
We note that the PPP-VB (2K, 2 0 approximation yields amplitudes (and energies; 
see above) that are very close to the FCI ones. Thus, for d=2A,  we get 
t VB(ze) = - -  0.00012. 

Carrying out next the CCD-VB calculations with the PPP-VB(2K, le) ampli- 
tudes, we obtain a significant improvement in the vicinity of square geometry as 
Fig. 2 demonstrates. As expected, the two Kekul6 one e structure VB description is 
very appropriate for the square geometry, but significantly deteriorates for larger 
intersystem separations d. On the other hand, the standard CCD approach per- 
forms very well in the dissociated limit, since it involves two closed shell subsystems 
and the method is size extensive, but suffers in the vicinity of the square geometry, 
where the reference configuration becomes degenerate with the lowest lying biex- 
cited one (see also analogous 1-I4 models [-3a, 10]). The resulting poorer perfor- 
mance of the standard CCD in this region is then almost completely corrected by 
the CCD-VB approach exploiting the crudest estimate of the t4 amplitude given in 
Table 1. Of course, in view of the poor performance of the PPP-VB(2K, 1~) 
approximation for large d values, CCD-VB energy is slightly worse than the 
standard CCD one for larger separations (d = 2 A). As already pointed out, this 
disparity could be removed by considering two-parameter PPP-VB corrections. 

Table 1. A comparison of approximate (PPP-VB with 2 Kekul6 structures and one mixing para- 
meter el OEAO basis) and exact (FC1) 4-body connected cluster amplitudes (t4) characterizing the 
fragmentation of the n-electron model of cyclobutadiene as a function of the ethylenic subsystem 
separation parameter d (in ~,) (see Fig. l(a)). The optimal values of the mixing parameter el as well as 
the differences A of the PPP-VB and FCI t4 amplitudes are also given 

t4 

d(flk) ~]opt) PPP-VB(2K, 10 FCI A 

1.30 0.2778 --0.011572 --0.008555 
1.35 0.2635 -0.033078 --0.024969 
t.40 0.2549 -0.070274 --0.070688 
1.45 0.2513 -0.038521 -0.030237 
1.50 0.2519 -0.017306 -0.013698 
1.55 0.2560 --0.005439 -0.006716 
L60 0.2623 -0.000650 -0.003498 
1.65 0.2693 -0.000144 --0.001880 
1.70 0.2758 -0.001577 --0.001008 
1.80 0.2856 -0.005582 --0.000222 
2.00 0.2958 -0.011370 0.000164 

--0.003017 
-0.008108 

0.000414 
-0.008284 
-0.003608 

0.001277 
0.002848 
0.001736 

-0.000569 
-0.005360 
--0.011534 
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Fig. 2. Relative correlation energy Etappr°x)/E FCI as a function of the intersystem separation d (in A), (see 
Fig. l(a)) for the cyclobutadiene dissociation into the ethylenic fragments, obtained with the standard 
and VB-corrected CCD approaches, as well as with the variational PPP-VB approach. The VB-based 
approaches always employ two Kekul6 structures (2K) and one-parameter OEAOs (le). For one value 
of d(d=2,~), the result obtained with two-parameter OEAOs (2e) is also indicated. The label T4 
indicates that Ta = T 3 = 0  in this case. See the text for more detail 

To conclude, we find that even the crudest VB approximation is capable of 
improving the performance of the standard CCD method in the critical region of 
geometries. 

3.1.2 Breaking of a single bond. We next explore a single bond dissociation mode 
in cyclobutadiene, rotating appropriately the terminal bonds as indicated in Fig. 
l(b). The molecular orbitals are no longer determined by the symmetry of the 
model and both T1 and T3 no longer vanish. Since this is the simplest model in 
which all three correcting terms (i.e., T3, T4 and TI T3) give nonvanishing contribu- 
tions, we first study their role using their exact values as provided by the cluster 
analysis of the FCI wave function. The cluster amplitudes for two different values 
of the resonance integral fl (-2.4 and -1 eV) are shown in Figs. 3(a) and 3(b), 
respectively. We also note that due to the alternancy symmetry breaking in the 
PPP Hamiltonian (non-tight-binding approximation), the number of tl and t3 
amplitudes is doubled as compared to their number for the corresponding tight 
binding model. We see from Figs. 3(a), (b) that the importance of T4 clusters is again 
most prominent in the vicinity of the square geometry, namely for 0 > 80 °. In 
contrast, both T1 and/'3 components vanish for the square geometry, 0 = 90 °, and 
are in fact rather small in the whole range of geometries involved. Nonetheless, 
we shall see that they play a nonnegligible role, particularly when T4 becomes 
prominent. 

In order to see the role of individual correcting terms in the CCSD-VB 
approach, we employ the exact FCI or FVB amplitudes and examine the differ- 
ences in correlation energy relative to the FCI exact result as shown in Fig. 4. Thus, 
when considering all three correcting terms simultaneously, we recover the exact 
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Fig. 3a, b. The exact one, three and 
four-body connected cluster 
components obtained by cluster 
analysis of the FCI wave function 
modelling the cyclobutadiene ring 
opening as a function of the angle 
0 (in degrees), (cf. Fig. l(b)). Two 
values of the resonance integral 
characterizing the equilibrium 
C-C bond are considered: -2.4 eV 
(a) and - 1 eV (b) 

F C I  result. We see that  in the case of  physical parametr izat ion (fl = - 2 . 4  eV), the 
s tandard  C C S D  method  gives excellent results up to 0,,~ 75 °. We also see that  the 
T17"3 correcting term gives an almost  negligible effect, the CCSD-VB(T1 Ts) ener- 
gies hardly differing from the s tandard  C C S D  ones for bo th  resonance integral 
values considered. The role of  T3 and T4 corrections are very interesting. Both are 
very small for the spectroscopic parametr izat ion in the nondegenerate  region, i.e. 
for 0 < 80 °, and working  against each other. Indeed, we can say that  in this region of  
geometries bo th  corrections practically compensate,  a l though when applied simul- 
taneously,  they do improve the C C S D  result yielding practically the FCI  result. 
Fo r  example, for the geometry  corresponding to cis-butadiene (0 = 60°), we have 
that  the s tandard  C C S D  and T1T3, T3, T4. and (/"3 +T4)  corrected CCSD-VB 
correlat ion energies are - 1.4110, and - 1.4106, - 1.4162, - 1.4047, and 
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Fig. 4a, b. Correlation energy 
(relative to the FCI energy) (in eV) 
of the cyclobutadiene ring opening 
model, obtained with the standard 
and VB-corrected CCSD 
approaches, as a function of the 
angle 0 (in degrees) (see Fig. l(b)). 
The CCSD-VB approaches, 
involving T3, 7"4, Tx 7"3 and T3 + T4 
correcting terms, employ the exact 
FCI cluster amplitudes. The results 
for equilibrium resonance integral 
values of - 2.4 eV (a) and - 1 eV 
(b) are shown 

- 1 . 4 0 9 9  eV, respectively. The  cor responding  F C I  value is - 1 . 4 0 9 6  eV. F o r  
0 > 8 0  °, when the prominence  of T4 clusters rapidly increases with 0, we see 
practical ly n o  effect of  T1 and  T3 clusters (both of which tend to zero in the 0-= 90 ° 
limit), so that  T4 corrected C C S D - V B  gives a practical ly exact result. Fo r  the 
/~ = - 1 eV case, where the corre la t ion effects are more  prominent ,  we see again 
a small effect of T1 T3 and T3 correct ions by themselves, a l though now T3 and T4 
correct ions work  in the same direction. We also see that  a round  0,-~ 75 ° their 
contr ibut ions  are clearly nonaddit ive.  These results should be also c o m p a r e d  with 
the ab  initio results concerning the H 4 model  [11]. Al though very different 
me thodo logy  was used in bo th  cases, since the T3 or T4 corrected C C S D  equat ions 
are very different f rom the C C S D T  or C C S D Q  ones, the similar behav ior  of  the 3- 
and 4-body effects resulting in bo th  cases is interesting. 
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After exploring the role of individual correcting terms we are now ready to 
examine how well these corrections can be accomplished using approximate VB 
wave functions. We used again 2 Kekul6 structures and two distinct nearest 
neighbor parameters: one for the C-C bonds of fixed bond length (el) and one for 
the C-C bond being broken (~). Optimizing both parameters we see that el does 
not change very much (being 0.25 at 0 = 90 °, 0.29 at 0 = 80 ° and 0.31 at 0 = 0, while 
e~ rapidly decreases as 0 changes from 90 ° to 80 ° (from 0.25 at 0 = 90 ° to 0.039 at 
0 = 80 ° reaching zero at 0=  75°). We could thus keep el fixed at the appropriate 
optimal value (see Fig. 2 of Part  II) and optimize only s'l (approximation (b) above). 
We also note that the highly strained cyclobutadiene structure is rather untypical 
in that it leads to the smallest value of the mixing parameter of all the n-electron 
systems studied earlier (for the corresponding tight binding study see [9a]). For  
0 < 80 °, e'~ is almost zero. Thus, for 0 < 70 °, e'~ was set equal to zero and only sl was 
optimized. The t3 and t4 cluster amplitudes obtained from these PPP-VB wave 
functions are compared with the exact FCI amplitudes in Fig. 5. Although the 
absolute value of these amplitudes are overestimated, an overall cluster structure 
seems to be reasonably reproduced. 

Correlation energies relative to the FCI energies, that result by applying the 
above obtained T3 and T4 corrections (T1 T3 corrections always remain very small), 
are shown in Fig. 6. We see that the approximate T3 and T4 corrections have very 
much similar effect as do the exact ones and, since the approximate amplitudes 
overestimate the exact ones, the corrections are larger as well. Again, however, 
there is a mutual compensation of the tri- and tetra-excited effects so that in either 
case, only the total/ '3 + T4 corrections improve the standard CCSD result. Close to 
the square geometry (85°<0<90°), the Ta component being almost zero has 
practically no effect on the CCSD energy so that the whole contribution is 
practically due to the T4 clusters. Nonetheless, we must conclude that the standard 
CCSD method performs very well over the whole region of 0 and only near the 
quasidegenerate square configuration may be substantially improved by imple- 
menting the VB based corrections. 

0.02- 

-0.00- 

-0.02- 
T 

-0.04- 

-0.06 

-0.08 

o O 

O O 

[] T 3.VB 

0 T4. VB 

[] T3.FCI 

o Ta.FCI 

9'0 8'5 80 75 7'0 65 6'0 
0(deg) 
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Fig. 6. Correlation energy (relative to the FCI energy) (in eV) of the cyclobutadiene ring opening model 
obtained with the standard and VB corrected CCSD methods, as a function of the ring opening 
paramete) 0 (in degrees) (see Fig. l(b)). The CCSD-VB method employs the approximate PPP-VB based 
cluster components (see the text and Fig. 5). For the sake of comparison, the results employing the exact 
(FCI) T3 and T4 corrections are also shown. The symbol F (full) indicates that all three correction terms 
(Ta, 7"4, T1 T3) were applied. The corresponding FCI result [i.e., CCSD (FCI-F)], yielding the exact FCI 
energy, is not shown 

3.2 Benzene 

In considering both modes of separation of benzene into the two fragments, we 
employ parametrization described in Sect. 2 with fl0 = -  2.4 eV and C-C bond 
length of 1.4 A. The nearest neighbor mixing parameters, determining the OEAOs, 
were fixed at their optimal values corresponding to the benzene equilibrium 
geometry for all bonds whose bond length remained constant in the separation 
process (el), and only those parameters associated with bonds being broken were 
optimized for each separation distance d (cf. Figs. l(c) and l(d)). In the case of 
2 Kekul6 structure VB wave function, the fixed mixing parameter has the value 

(5c) e]2K) = 0.3329 and when all 5 covalent structures are considered, el = 0.3310. Note 
that in each case all resonance integrals between any pair of carbon atomic sites are 
considered. (For the sake of comparison, e(12K) in the case of the tight binding 
approximation equals 0.341.) 

3.2.1 Diels-Alder mode. Considering the Diels-Adler dissociation mode and de- 
fining the geometry of intermediate nuclear conformations using a single parameter 
d (Fig. l(c)) by keeping the dissociating fragments rigid, we first determined 
corresponding PPP-VB energies and wave functions by optimizing the variable 
mixing parameter g~ for both 2 Kekul6 and 5 covalent structure cases. The resulting 
optimal parameter values, as well as the corresponding PPP-VB energies, are given 
in Table 2, together with corresponding exact energies given by the FCI or FVB 
procedures. 
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Table 2. Correlation energies obtained with the FCI and PPP-VB approaches involving two Kekul6 
(2K) and five covalent (5c) structures for the Diels-Alder mode of dissociation of the n-electron model of 
benzene as a function of the separation parameter d (in A) (see Fig. l(c)). The OEAO basis employed in 
PPP-VB calculations involved one fixed mixing parameter (el =0.3329 for 2K and el =0.3310 for 5c 
cases) for nearest neighbors with the fixed internuclear separation and an analogous parameter e] for 
nearest neighbors involving variable internuclear separation. The optimal values of the latter parameter 
are also shown 

e', eoorr(eV) 

d (,~) 2K 5c 2K 5c FCI 

1.20 0.3370 0 .3350  --11.53478 -11.56115 --11.85023 
1.2124 0.3329 0 .3310  - - 1 1 . 4 2 5 1 3  --11.45163 -11.73936 
1.25 0.3204 0.3185 - 11.11606 -- 11.14278 - 11.42484 
1.30 0.3031 0 .3016  -10.75493 --10.78173 -11.05278 
1.35 0.2853 0 .2843  -10.44767 --10.47463 -10.73146 
1.40 0.2671 0 .2668  -10.18910 --10.21653 -10.45703 
1.45 0.2488 0.2492 -9.97322 -10.00159 --10.22480 
1.50 0.2307 0.2318 -9.79397 --9.82372 --10.02971 
1.60 0.1959 0.1982 --9.52309 --9.55659 -9.73091 
1.70 0.1642 0.1673 --9.33857 --9.37629 -9.52462 
1.80 0.1364 0.1397 --9.21309 -9.25472 -9.38301 
1.90 0.1125 0.1157 --9.12782 -9.17271 -9.28610 
2.00 0.0923 0.0952 --9.06996 -9.11740 -9.21995 
2.50 0.0323 0.0334 --8.96704 --9.01981 -9.10073 
3.00 0.0105 0.0109 -8.95387 --9.00743 --9.08469 
3.50 0.0033 0.0034 -8.95240 --9.00605 -9.08257 
4.00 0.0009 0.0010 --8.95225 --9.00591 --9.08219 
5.00 0.0001 0.0001 --8.95223 -9.00590 --9.08201 
6.00 0.0000 0.0000 -8.95223 -9.00590 --9.08196 

W e  next  app l i ed  the T3, T4 a n d / ' 1  T3 correc t ions  to the s t anda rd  C C S D  proce-  
dure  using the F C I  as well as the P P P - V B  cluster  c ompone n t s  ob ta ined  by  cluster  
ana lyz ing  co r r e spond ing  wave functions.  The  cor re la t ion  energies relat ive to  the  
F C I  values as a funct ion of  the subsys tem sepa ra t ion  d is tance  are  shown in Figs. 
7(a)-(c). Firs t ,  we note  tha t  the C C S D  m e t h o d  yields excellent  results in this case, 
which aga in  is connec ted  with the fact tha t  the  d issoc ia t ion  involves c losed shell 
systems. On ly  in the  region of  d values lying between the equi l ib r ium geomet ry  

[ d =  1.21244 A = (x//3/2) (1.4 A) ]  and  d = 2 . 5  A do we find a small  dev ia t ion  f rom 
the F C I  energy. We also see tha t  even when cons ider ing  the F C I  based  correc t ions  
(Fig. 7(a)), no ind iv idua l  cor rec t ion  will improve  the C C S D  result.  On ly  when 
s imul taneously  considering bo th  T3 and T4 corrections,  do  we find an improvement .  
Of  course,  inc luding also T1 T3 cor rec t ion  (which seems to be fairly well addi t ive  
though  small)  we recover  the  F C I  result.  

W h e n  cons ider ing  C C S D - V B  energies employ ing  a p p r o x i m a t e  cluster  compo-  
nents  ob t a ined  f rom P P P - V B  wave funct ions involving 2 Kekul6  (Fig. 7(b)) or  
5 covalent  (Fig. 7(c)) s t ructures,  the effect of ind iv idua l  cor rec t ions  is magnified,  
mos t  l ikely thanks  to the overes t imate  of  T3 and  T4 cluster  componen t s .  In  this case 
even the c o m b i n e d  to ta l  cor rec t ion  does  no t  improve  the s t a n d a r d  C C S D  result,  
except  in a small  pa r t  of  the  region where  C C S D  deviates  f rom F C I  

(1.5 A < d < 2.0 A). F o r  the geometr ies  close to the equ i l ib r ium one, s t anda rd  C C S D  
gives be t te r  results. 
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Fig. 7a-e.  Correlation energy (relative to the FCI energy, see Table 2) (in eV) for the Diels-Alder mode 
of dissociation of the n-electronic model of benzene, obtained with the standard and VB-corrected 
CCSD approaches, as a function of the separation parameter d (cf. Fig. l(c)). The CCSD-VB ap- 
proaches, considering both individual correction terms (T3,T4,T~T~) as well as their combinations 
IT3 + 7"4 and T3 + T4 + T1T~, the latter designated as F (full)I, exploit the exact FCI cluster amplitudes 
(a), as well as the approximate ones obtained by cluster analyzing PPP-VB wave functions obtained 
with two Kekul6 (2K) (b) and all five covalent (5c) (e) structures. Note that the CCSD (FCI-F) approach 
yields the exact FCI energy 

In this r egard  it is in teres t ing that  the cor rec t ions  der ived  f rom the energet ical ly  
infer ior  2 Kekul6  s t ructure  VB so lu t ion  yield bet ter  results than  those  involving all 
5 cova len t  s tructures,  a l though  the la t te r  account  be t te r  for the T 3 clusters. Since 
both a p p r o x i m a t e  VB wave funct ions lead to very s imilar  T4 correct ions ,  it  mus t  be 
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Fig. 7. Continued 
4 

a mutual compensation of errors that leads to a slightly better performance of the 
simple 2 Kekul6 structure solution. 

We can thus conclude that since the CCSD method works so well in this 
"closed-shell case", it is extremely difficult to improve its performance by exploiting 
approximate wave functions. In fact, it is remarkable that these corrections work as 
well as they do in view of their very approximate nature, as the results summarized 
in Fig. 8 demonstrate. 

This figure compares the correlation energies (relative to FCI) of approximate 
PPP-VB wave functions involving 2 Kekul6 and 5 covalent structures and the 
corresponding energies obtained with the standard CCSD and CCSD-VB 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05- 

-0.00. 

-0.05 
1 

o C C S D ( V B . 2 K - F )  

o C C S D ( V B . 5 c - F )  

C C S D  
V B ( 2 K )  

(5c) 

o i  

1~5 2 215 3 3~5 

d(A) 

Fig. 8. Comparison of the 
PPP-VB, standard and VB 
corrected CCSD correlation 
energies (relative to the FCI 
energy, see Table 2) (in eV) as 
a function of the separation 
parameter d (of. Fig. lc) for the 
Diels-Alder mode of benzene 
model dissociation. Both 2 Kekul6 
(2K) and 5 covalent (5c) 
variational PPP-VB and 
corresponding VB corrected 
CCSD energies are shown 
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methods. We see that in only a very small region of intersystem separations the VB 
corrected CCSD works better than the standard CCSD, although all methods give 
very good results. 

3.2.2 Radicaloid mode. A much more severe test of the proposed method than can 
be afforded by systems involving only closed shell type subsystems is that involving 
open shell subsystems. In order to carry out such a test we consider a recombination 
of two allylic radicals as schematically represented in Fig. l(d). We shall proceed in 
the same manner as in the preceding section. 

Table 3. Same as Table 2 for the radicaloid mode of benzene ring separation. See Fig. l(d) for the 
definition of the subsystem separation parameter d (in A) 

~i eoorr(eV) 

d (A) 2K 5c 2K 5c FCI 

1.35 0.3579 0.3519 -11.95227 --11.97976 -12.27364 
1.40 0.3329 0.3310 -11.42513 -11.45163 --11.73936 
1.45 0.3093 0.3104 -10.95027 -10.97866 --11.25863 
1.50 0.2871 0.2901 - 10.52489 -10.55758 --10.82797 
1.55 0.2658 0.2703 -10.14608 -10.18498 --10.44401 
1.60 0.2456 0.2510 -9.81086 -9.85736 -10.10343 
1.70 0.2081 0.2141 -9.25878 -9.32281 -9.53963 
1.80 0.1744 0.1801 -8.84334 -8.92547 --9.11157 
2.00 0.1187 0.1229 -8.32211 -8.43460 --8.56751 
2.50 0.0400 0.0414 -7.92149 -8.06513 --8.14323 
3.00 0.0124 0.0128 -7.87246 --8.02052 --8.09093 
4.00 0.0010 0.0011 --7.86707 -8.01553 -8.08456 
5.00 0.0001 0.0001 --7.86710 -8.01549 -8.08433 
6.00 0.0000 0.0000 -7.86714 --8.01549 -8.08426 
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Fig. 9a-e. Same as Fig. 7 for the 
radicaloid mode of benzene ring 
opening (see Fig. l(d) for the 
definition of the separation 
parameter d) 
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The optimal values of the variable mixing parameter e'~ as well as the PPP-VB 
and FCI energies are listed in Table 3. The correlation energies (relative to FCI) 
obtained with the FCI and PPP-VB corrected as well as with the standard CCSD 
methods are given in Figs. 9(a)-(c). We see that in this case the CCSD energy 
approaches an incorrect limit when the open shell subsystems are formed. Again, 
the T1 T3 terms have practically no effect while the T 3 and 7"4 terms work in 
opposite directions, both effects being fairly additive. The main effect originates 
from the T4 corrections, the T3 contribution being much smaller. When T3 
and T4 corrections are applied simultaneously, one obtains practically the FCI 
result. 
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Fig. 9. Continued 
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Fig. 10. Same as Fig. 8 for the 
radicaloid mode of benzene ring 
opening (see Fig. l(d) for the 
definition of the separation 
parameter d) 

Employing approximate cluster components derived from VB wave functions 
involving 2 Kekul6 and 5 covalent structures, we obtain very similar results. Both 
are capable of correcting the erroneous behavior of the standard CCSD approach 
in the open shell region. 

Again, it is remarkable that the 2 Kekul6 structure VB wave function is capable 
of providing such good corrections in view of its inferiority from the energetical 
viewpoint. This is illustrated in Fig. 10 where we plot correlation energies (relative 
to FCI) resulting from using the PPP-VB procedure with 2 Kekul6 and 5 covalent 
structures, the correspondingly VB corrected CCSD method and the standard 
CCSD method. This figure should also be compared with the analogous one for 
the Diels-Alder dissociation mode (Fig. 8). We see that independently of the 
dissociation (or association) mode, the CCSD-VB energies provide a very good 
approximation to the FCI exact result for all the nuclear conformations that are 
explored. 

4 Conclusions 

The results of this paper corroborate our expectations concerning the usefulness of 
correcting the standard SR CCSD equations by exploiting the approximate values 
of the 3- and 4-body connected cluster amplitudes, obtained by cluster analysis of 
very simple VB wave functions. In this way a satisfactory decoupling of the CC 
chain of equations at the CCSD level may be achieved even in quasidegenerate or 
degenerate situations, where the standard approach often fails. Although such 
corrections do very little in standard non-degenerate cases, when the CCSD 
method provides an excellent approximation, and can even slightly degrade the 
quality of the CCSD energies in such cases, there is no doubt about their usefulness 
in situations where the higher order than pair clusters play an important role. Thus, 
from a practical viewpoint, one should revert to the CCSD-VB approach only in 
cases for which the Ts and/or T4 clusters are prominent, based on the cluster 
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analysis of the approximate VB wave function being employed. In cases where 
these clusters turn out to be small, it is just as well to leave the CCSD results 
uncorrected. In this way, the usefulness of the standard CCSD method may be 
extended to situations where otherwise this approach would fail, including cases 
when the system dissociates into the open shell fragments. 

It  is quite remarkable that even very simple VB wave functions are capable of 
appropriately correcting the CCSD equations, so that much improved results (and 
certainly the qualitatively correct dissociation limit) are achieved. This is parti- 
cularly the case for physical (spectroscopic) parametrizations, when the variational 
energy that is associated with these simple VB wave functions, involving only 
Kekul6 structures, is much inferior to the CCSD energies (cf. Figs. 8 and 9). Thus, 
the present study of various model systems, simulating the dissociation (or associ- 
ation) processes, supports our conclusions that were drawn on the basis of our 
study of the CCSD-VB capabilities in strongly correlated regimes (cf. Part  II). 

Another interesting result of these studies is the manifestation of the roles of the 
3- and 4-body connected clusters in various situations. We have seen that in many 
cases the 3- and 4-body terms work "against each other", similarly as it was found 
in an earlier ab initio study of the H4 model system [-11], where these effects were 
accounted for by solving appropriately enlarged CC systems of equations. How- 
ever, in a number  of situations (see especially Part  II), particularly when CCSD 
leads to poor  results or even breaks down, the 3- and 4-body corrections may 
contribute in the same direction. In such situations we also usually find that their 
contributions are highly nonadditive, so that even when the T3 contribution is very 
small, it may be essential that it is accounted for simultaneously with the T~ 
contribution in order to achieve a satisfactory result (see e.g. the highly correlated 
regime in cyclic polyenes), at least within the CCSD-VB scheme considered. 

Admittedly, the models employed in this study are too simple and restricted to 
allow us to make general conclusions concerning the CCSD-VB approach. Addi- 
tional developments both at formal and computat ional  levels will be required in 
order to test this approach at the ab initio level. Nonetheless, the examples 
presented in Parts I I  and I I I  of this series seem to clearly indicate that further 
exploration of the possibilities offered by this approach, including the search for 
other sources of approximate higher order cluster amplitudes, are worthwhile. 
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